
Detection of Stable Cyclic $C_2H_5O^+$ and $C_2H_5S^+$ Ions by Collisional Activation Spectroscopy¹

By BASTIAAN VAN DE GRAAF, PAUL P. DYMERSKI, and FRED W. McLAFFERTY* (Spencer T. Olin Laboratory, Department of Chemistry, Cornell University, Ithaca, NY 14850)

Summary Collisional activation spectra give direct evidence for the stability of cyclic $C_2H_5O^+$ and $C_2H_5S^+$ ions and their formation in a β -cleavage displacement from Y-CH₂-CH₂-XH⁺.

No direct evidence has been offered for the formation of the three-membered ring saturated ions (I) and (II) as decomposition products, although these products have been proposed for mass spectral reactions such as β cleavage^{2,3} (equation 1). Evidence for them has been sought by a variety of techniques,⁴⁻⁷ which have identified the isomeric $C_2H_5O^+$ ions $CH_3CH=OH^+$ (III) and CH_3^- O=CH₂+ (IV); in several studies 42,5,6 (I) could not be distinguished from (III), which is ca.26 kcal mol⁻¹ more stable than (I).^{4b} Beauchamp and his co-workers have reported^{4b} that the long-lived $\mathrm{C_2H_5O^+}$ ion formed by protonation of ethylene oxide can be distinguished from (III) and (IV) by reaction with PH₃ or H₂S in an ion-cyclotron resonance spectrometer. However, this reaction apparently has not been applied to the identification of (I) ions formed in dissociation reactions; its diagnostic usefulness for these is

open to question because ion-molecule reactivities are affected by differences in ion energies.⁸ This study employs collisional activation (CA) spectra,^{1,6,9} which are not appreciably affected by ion internal energy.

CA spectra (Table) measured with improved instrumentation¹⁰ clearly distinguish the $C_2H_5O^+$ ions produced by protonation of ethylene oxide, which presumably are (I),[†] from (III) as well as (IV). The CA spectrum of (I) is consistent with its structure; of the isomers, (I) gives the largest peak corresponding to the loss of CH₂, and the hydrogen

† As there is no a priori knowledge of the CA spectrum of (I), the concurrent formation of some (III) cannot be ruled out.

		Ŧ	Relative abundance							$[m/e \ 31]$	
Precursor		Ion structure	m/e	24	25	26	28	30	31	32	$\frac{[m/e \ 30]}{[m/e \ 30]}$
CH ₃ OCH ₂ CH ₂ OCH ₃		(IV)		<1	<1	4	41	43	12		
CH ₃ OCH ₂ CH ₂ CN		(IV)		<1	2	4	39	43	12		
CH _a CHO ^B		(III)		4	16	45	18	14	3		0.21 ± 0.04
(СЙ ₃) ₂ СНОН		(III)		4	14	49	15	14	4		
CH ₃ CH ₂ (CH ₃)CHOH	••	(III)		5	16	47	17	12	3		
CH ₈ CHÖ ^{b,c}		$[{}^{2}H_{1}]$ -(III)		4	15	45			17	3	
(CH ₃) ₂ CHOD ^{c,d}	••	[² H ₁]-(III)		5	15	45			16	4	
$CH_2CH_2O^8$	••	(I)		4	15	42	13	11	16	—	1.7 ± 0.2
CH ₂ CH ₂ O ^{b,c}		[² H ₁]-(I)		4	15	40			9	16	
CH ₃ CH ₂ CH ₂ CH ₂ OH		(III)		5	16	48	17	11	3		0.24
BrCH ₂ CH ₂ OH		(I), (III)		4	16	43	16	14	6		0· 39
O ₂ NCH ₂ CH ₂ OH	••	(I), (III)		5	16	42	19	13	5		0.31

TABLE.	Partial	CA spectra of	$C_2H_5O^+$ ions
--------	---------	---------------	------------------

• By protonation with H_2O at high pressure. • By deuteriation with D_2O at high pressure. • Based on an estimate that m/e 29 is ca. 15%. ^d From propan-2-ol by exchange with D_2O in the inlet system.

originally on oxygen is not lost in the formation of this m/e31 (32 in the D-labelled analogue) peak. For the formation of (I) by displacement (equation 1), the CA spectra of the C₂H₅O⁺ ions from n-butanol, 2-bromoethanol, and 2-nitroethanol ($X = O, Y = Et, Br, or NO_2$) indicate that appreciable amounts of (I) are formed with bromo or nitro, but not alkyl, as the leaving group.

 $H_{s}S^{+}$ ions from the n-alkyl-thiols show that a major portion of these ions have the cyclic structure (equation 1). This is consistent with the greater tendency for β -cleavage in RCH₂CH₂SH⁺ than in RCH₂CH₂OH^{+2,3,7} and with the smaller bond angle for C-S-C than for C-O-C.

We are grateful to Dr. T. Wachs for instrument modifications and advice, and to the National Institutes of Health for financial support.

For the $C_2H_5S^+$ ions, the isomers (II), $CH_3CH=SH^+$ (V), and CH₃S=CH₂+ (VI) can also be characterized from their CA spectra (data not shown). The CA spectra of the C_2 -

(Received, 8th October 1975; Com. 1150.)

¹ For previous paper in series: Metastable Ion Characteristics, see C. C. Van de Sande and F. W. McLafferty, J. Amer. Chem. Soc., 1975, **97**, 2298.

² S. Sample and C. Djerassi, J. Amer. Chem. Soc., 1966, 88, 1937.

⁸ F. W. McLafferty, Interpretation of Mass Spectra, 2nd edn., Benjamin, Reading, Massachusetts, 1973, pp. 63-64. (a) J. L. Beauchamp and R. C. Dunbar, J. Amer. Chem. Soc., 1970, 92, 1477; (b) R. H. Staley, R. R. Corderman, M. S. Foster, and

J. L. Beauchamp, ibid., 1974, 96, 1260. ⁵ T. W. Shannon and F. W. McLafferty, J. Amer. Chem. Soc., 1966, 88, 5021; B. G. Keyes and A. G. Harrison, Org. Mass Spectro-

^a F. W. Schallich and T. W. McLafferty, J. Multi-Chem. Cool, 1900, 60, 617, 21 Control of the second se

Spectrometry, 1969, 2, 209.

J. L. Beauchamp, Ann. Rev. Phys. Chem., 1971, 22, 527.
F. W. McLafferty, P. F. Bente, III, R. Kornfeld, S.-C. Tsai, and I. Howe, J. Amer. Chem. Soc., 1973, 95, 2120.

¹⁰ Experimental details are given in ref. 1 and P. P. Dymerski, R. M. Prinstein, P. F. Bente, III, and F. W. McLafferty, in preparation.